I-95

Variable Speed Limit System

Commonwealth Transportation Board Meeting

April 20, 2021

Key Takeaways

Project Background

Significant congestion; high travel time variability; high crash rates

Variable Speed Deployments

Other DOTs are using VSL for congestion and weather applications

What VSL will look like in Virginia

Field devices; algorithm features; how it works

Expected Benefits

Crash rates are reduced, throughput is increased, fewer stop-and-go conditions

Next Steps

Deployment schedule, performance evaluation, and VSL expansion strategy

Project Background

- I-95 Corridor Improvement Plan (CIP)
 - I-95 near Fredericksburg experiences heavy recurring weekday and weekend congestion
 - High incident and personal vehicle delay increases approaching Fredericksburg (and further north)
 - Unreliable travel time due to stop-and-go conditions throughout the corridor
 - Other projects north of Fredericksburg will not mitigate congestion south of these projects

Project Development

Corridor Characteristics

- Recurring and non-recurring congestion
- Hot spots with stop-and-go conditions
- Speed variations
- Higher crash rates significant incident delay

2015 – 2019 Total Annual Person Hours of Delay

2015-2019 Collision Types

Frequency of Speed Reductions Along Corridor

Northbound I-95, PM Peak Period, Weekends (Jan 2019 – Aug 2020)

Why VSL is Deployed

Speed Harmonization

End-of-Queue Warning

Weather and Visibility Advisories

I-15 in Las Vegas, NV

Example VSL Signs

Example VSL Signs

Imagery of Future VSL on I-95

How VSL Works

VSL Control Algorithm

How VSL Works

Congestion Example

- Time 0:00. All signs display free flow speed limits (i.e., 65 mph or 70 mph)
- Time 1:00. Signs upstream begin to show reduced speed limits as congestion builds
- As Congestion Builds Over Time. Posted speed limits will decrease further and along more of the corridor

Note: The minimum posted speed limit will be 35 mph

 As Congestion Dissipates Over Time. Posted speed limits will return to free flow speed limits (i.e., 65 mph or 70 mph)

Corridor Evaluation & Expansion Strategy

- Evaluate Project Performance
 - Reduce Recurring and Non-Recurring Congestion
 - Reduce Incidents
 - Improve Travel Time Reliability
 - Increase Throughput
- Define characteristics for future deployments
 - Crash rates
 - Congestion hot spots, severity and duration
 - Weather or visibility impacts
 - Available capacity for increased throughput
- Identify and prioritize candidate VSL corridors throughout state for future deployments

Project Timeline

- Concept of Operations Completed
- High-Level System Requirements and Design Completed
- VSL Algorithm In Development
- System Deployment In Design
- Public Engagement Plan In Development
- System Operational Fall 2021

Public Communication

- Messaging:
 - Increasing awareness
 - Lead with safety
- Timing (3 waves):
 - CTB presentation
 - Launch
 - Seasonal outreach
- Web: virginiadot.org/variablespeedlimits
- Strategies:
 - Joint event with VSP at launch
 - Social media, earned media, owned media
 - I-95 Safety Rest Areas
- Other
 - Briefings with local governments/law enforcement before activation
 - Communicating change early with private mapping partners

VDOT I-95 VSL Public Outreach Video:

https://www.youtube.com/watch?v=480pyXmiHzA

Questions

